Object Tracking by Unified Semantic Knowledge and Instance Features
نویسندگان
چکیده
منابع مشابه
MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features
In this work, we tackle the problem of instance segmentation, the task of simultaneously solving object detection and semantic segmentation. Towards this goal, we present a model, called MaskLab, which produces three outputs: box detection, semantic segmentation, and direction prediction. Building on top of the Faster-RCNN object detector, the predicted boxes provide accurate localization of ob...
متن کاملLearning the Semantic Landscape: embedding scene knowledge in object tracking
The accuracy of object tracking methodologies can be significantly improved by utilising knowledge about the monitored scene. Such scene knowledge includes the homography between the camera and ground planes and the occlusion landscape identifying the depth map associated with the static occlusions in the scene. Using the ground plane, a simple method of relating the projected height and width ...
متن کاملTowards Unified Object Detection and Semantic Segmentation
Object detection and semantic segmentation are two strongly correlated tasks, yet typically solved separately or sequentially with substantially different techniques. Motivated by the complementary effect observed from the typical failure cases of the two tasks, we propose a unified framework for joint object detection and semantic segmentation. By enforcing the consistency between final detect...
متن کاملPatch Based Multiple Instance Learning Algorithm for Object Tracking
To deal with the problems of illumination changes or pose variations and serious partial occlusion, patch based multiple instance learning (P-MIL) algorithm is proposed. The algorithm divides an object into many blocks. Then, the online MIL algorithm is applied on each block for obtaining strong classifier. The algorithm takes account of both the average classification score and classification ...
متن کاملFrom Pixels to Object Sequences: Recurrent Semantic Instance Segmentation
We present a recurrent model for semantic instance segmentation that sequentially generates binary masks and their associated class probabilities for every object in an image. Our proposed system is trainable end-to-end from an input image to a sequence of labeled masks and, compared to methods relying on object proposals, does not require postprocessing steps on its output. We study the suitab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2019
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2018edl8181